The Rust Programming
Language

Tech Spotlight 2019-05-01

Rich Infante




"Rust is a systems programming language that runs
blazingly fast, prevents segfaults, and guarantees thread
safety. "




Features?



zero-cost abstractions

guaranteed memory safety

move semantics

pattern matching type inference

trait-based generics

minimal runtime

efficient C bindings

threads without data races



Hello, World!

fn main() {
println! ("Hello, World!");

}

3y



A "Quick" Overview...



gifbin.com



gifbin.com



Variables

3y



Variables

let luggage combination =



Variables

let luggage combination =

let mut 1s airshield open = false;



Variables

let luggage combination = ;
let mut 1s airshield open = false;

let planet name = "Druidia";



Logic Statements

X >
X ==
X <=
y == true

X == &&y::
X == || (y == && z == )



Structs

struct Planet {

name: String,

airshield combination: u64,

1s airshield open: bool

}



Structs

fn main() {

let druidia = Planet {
name: "Druidia".to string(),
airshield combination: ,
1s airshield open: false

};



Statements

let y = true;
1f y {
println! ("Y is true'");
} else {
println! ("Y is not true!!");

}



Statements

let mut x = :

while x > {
println! ("X = {}", x);
X -= 1;
}
loop {
if x <= {
break;

}
{+", x);

println! ("X
x -= 1;

}



Statements

let restaurant rating = 5;

let result = match restaurant rating {

| => "Bad'",
=> "Ok" ,
=> "Good",

=> "Excellent",

=> "Unknown"

};

println! ("Rating is {} stars ({})", restaurant rating, result);



Functions & Methods

3y



Functions & Methods

i W)

MENU, BACKSEFUNCTION,

ENTER?:



Functions & Methods

i W)

MENU, BACKSEFUNCTION,

ENTER?:



Functions

fn check combination(passcode: u64) -> bool {
1f passcode == {
return true

} else {
return false

}



Methods

impl Planet {

fn check combination(&self, passcode: u64d) -> bool {
if passcode == self.airshield combination {
return true

} else {
return false

}



Methods

fn main() {

let druidia = Planet {
name: "Druidia".to string(),
airshield combination: ,
1s airshield open: false

};

if druidia.check combination ( ) |
println! ("Combination correct!");

}



Block Rules

fn check combination(passcode: u64) -> bool {
1f passcode == {
true

} else {
false

}
}



Block Rules

fn check combination(passcode: u64) -> bool {
1f passcode == 12345 {
true; [!] Expected to return bool

} else {
false; [!] Expected to return bool

}



Error Handling

3y









Rust Error Handling

pub enum Result<T, E> {
Ok (T) ,
Err (E) ,

}



Rust Error Handling

fn failable (param: u64) -> std::result::Result<u64d, ()> {
1f param < {

Ok (param + )
} else {

Err(())

}
}



Rust Error Handling

fn main() {

if let Ok (res) = failable (40) {
println! ("got result: {}", res);
} else {
println! ("got error!");
}
}



Rust Error Handling

fn main() {

match failable (50) {
Ok (res) => println! ("result: {}", res),
Err( ) => println! ("Got an error.")
}
}



Optionals

pub enum Option<T> ({
None,
Some (T) ,

}

fn something() -> Option<u64> {
return Some ( )

}

fn something else() -> Option<u64d> {
return None

}



Traits




Traits

e Zero-Cost Abstraction
e Statically and Dynamically dispatched

e Statically dispatched traits are compiled into separate
copies depending on types used

e Dynamic traits are dispatched at runtime

e Use as interfaces, markers, allow overloading of operators,
functions.



use std::fmt;

trait Display ({
fn fmt(&self, f£: &mut fmt: :Formatter) -> Result<(), fmt::Error>;

}



// We have some struct
struct Point {

xX: 132,

y: 132,
}

// Implement the trait
impl fmt::Display for Point {
fn fmt (&self, £: &mut fmt: :Formatter) -> fmt::Result {
// write! writes to anything implementing std::io::Write
write! (£, "({}, {})", self.x, self.y)



fn main() {
let origin = Point { x: 0, y: };
println! ("The origin is: {}", origin);

}









Some Traits in standard library:

std::convert::{From, Into}
std::fmt::Display
std::string::ToString;
std: :borrow: :Borrow
std::1ter::Iterator

https://stevedonovan.github.io/rustifications/
2018/09/08/common-rust-traits.html



https://stevedonovan.github.io/rustifications/2018/09/08/common-rust-traits.html
https://stevedonovan.github.io/rustifications/2018/09/08/common-rust-traits.html

Crates & Modules

3y



# Cargo: packages for Rust X -1

X C ® ® https://crates.io TTIR # ¢ ® Search iINn (0 ©

crates.Ilo Browse All Crates  Docs v Log in with GitHub

Rust Package Registry

The Rust community’s crate registry

% Install Cargo  Getting Started

I.nstantly publljsh your c-:rates and |ns.tall them. Use the API to mter'act and 3 1 ,007,976,51 6 Downloads
find out more information about available crates. Become a contributor

and enhance the site with your work. ® 25,462 Crates in stock

New Crates Most Downloaded Just Updated

scp (0.1.0) libc (0.2.54) quicksilver (0.3.12)
dotenv_consts (0.1.1) rand (0.6.5) sw-composite (0.1.1)
guillotiere_ffi (0.4.2) bitflags (1.0.4) zeros (1.0.0)
gc-sequence (0.1.0) lazy_static (1.3.0) proc-macro-hack (0.5.6)

gc-arena (0.1.0) log (0.4.6) dotenv_consts (0.1.1)

gc-arena-derive (0.1.0) serde (1.0.91) amiquip (0.2.2)




Cargo.toml

[packagel

name = "satellite-tracking"

version = "0.1.0"

authors = ["Rich Infante <rich@richinfante.com>"]

edition = "2018"

[dependencies]

satellite = { path = "../satellite-rs" }

# { git = "https://github.com/richinfante/satellite-rs.git", branch = "master" }
chrono = "0.4"

reqwest = "0.9.12"

space-plot = { path = "../space-plot" }

rand = "0.6.5"



Using Modules

use std:: fmt:: Formatter;

use chrono::prelude:: *



Ownership

3y



aphcate




aphcate




Ownership in Rust

e You may have seen the & and * operators in C for
referencing / dereferencing variables.

e They are used in a similar manner in rust, but with some
more restrictions.



Ownership in Rust

In Rust, you can either have an "Owned" or "Borrowed"
reference to an object.

Syntax is similar to C-pointers
However, it actively prevents you from doing bad things.

Usually, code that would break thread safety or other
expectations won't even compile.



struct Food {
name: String

}

// Eat food - takes ownership of the wvariable.
fn eat food(meal: Food) {
println! ("ate food: {}", meal.name)

}

fn main() {
let pizza = Food { name: "Pizza".into() };
eat food(pizza);



struct Food {
name: String

}

// Eat food - takes ownership of the variable.
fn eat food(meal: Food) {
println! ("ate food: {}", meal.name)

}

fn main() {
let pizza = Food { name: "Pizza".into() 1},
eat food(pizza);
eat food(pizza);



struct Food {
name: String

}

// Eat food - takes ownership of the variable.
fn eat food(meal: Food) {
println! ("ate food: {}", meal.name)

}

fn main() {
let pizza = Food { name: "Pizza".into() 1},
eat food(pizza);
eat food(pizza);



struct Food {
name: String

// Eat food - takes ownership of the variable.
fn eat food(meal: Food) {
println! ("ate food: {}", meal.name)

fn main() {
let pizza = Food { name: "Pizza".into() 1},
eat food(pizza); <-- Moved Here
eat food(pizza); [!!] Use of moved value




struct Food {
name: String

// Eat food - takes ownership of the variable.
fn eat food(meal: Food) {
println! ("ate food: {}", meal.name)

fn main() {
let pizza = Food { name: "Pizza".into() 1},
eat food(pizza); <-- Moved Here
eat food(pizza); [!!] Use of moved value




struct Food {

}

//
fn

//
fn

fn

name: String

Eat food - takes ownership of the wvariable.

eat food(meal: Food) ({

println! ("ate food: {}", meal.name);

Inspect food - borrows the variable.

inspect food(meal: &Food)
println! ("inspected food:

main () {
let pizza = Food { name:
inspect food(&pizza);
eat food(pizza);

{

{}", meal.name);

"Pizza".into () };



struct Food {

}

//
fn

}

//

fn

name: String

Eat food - takes ownership of the wvariable.
eat food(meal: Food) {
println! ("ate food: {}", meal.name);

Inspect food - borrows the wvariable.
inspect food(meal: &Food) {

println! ("inspected food: {}", meal.name);
eat food(*pizza);

main () {
let pizza = Food { name: "Pizza'".into() };
inspect food(&pizza);
eat food(pizza) ;



struct Food {

}

//
fn

//
fn

fn

name: String

Eat food - takes ownership of the variable.

eat food(meal: Food) {

println! ("ate food: {}", meal.name);

Inspect food - borrows the wvariable.

inspect food(meal: &Food)
println! ("inspected food:

eat food(*pizza); [!!] Cannot move out of borrowed context.

{

{}", meal.name);

main () {
let pizza = Food { name:
inspect food(&pizza);
eat food(pizza) ;

"Pizza".into() };



struct Food {
name: String

}

// Eat food - takes ownership of the variable.
fn eat food(meal: Food) ({
println! ("ate food: {}", meal.name);

// Inspect food - borrows the variable.

fn inspect food(meal: &Food) ({
println! ("inspected food: {}", meal.name);
eat food(*pizza); [!!] Cannot move out of borrowed context.

fn main() {
let pizza = Food { name: "Pizza'".into() };
inspect food(&pizza);
eat food(pizza) ;




struct Food {
name: String

}

// Eat food - takes ownership of the variable.
fn eat food(meal: Food) ({
println! ("ate food: {}", meal.name);

// Inspect food - borrows the variable.

fn inspect food(meal: &Food) ({
println! ("inspected food: {}", meal.name);
eat food(*pizza); [!!] Cannot move out of borrowed context.

fn main() {
let pizza = Food { name: "Pizza'".into() };
inspect food(&pizza);
eat food(pizza) ;




Got all that?









Further Reading

https://doc.rust-lang.org/book/title-page.html - The Book

https://www.rust-lang.org/ - Language Website

https://crates.io/ - Crate registry

https://rustup.rs/ - Installer



https://doc.rust-lang.org/book/title-page.html
https://www.rust-lang.org/
https://crates.io/
https://rustup.rs/

Slides Available Online:
http://richinfante.com/talks/



http://richinfante.com/talks/

