The Rust Programming Language

Tech Spotlight 2019-05-01

Rich Infante

"**Rust** is a systems programming language that runs blazingly fast, prevents segfaults, and guarantees thread safety."

Features?

zero-cost abstractions

guaranteed memory safety

move semantics

pattern matching

type inference

trait-based generics

minimal runtime

efficient C bindings

threads without data races

Hello, World!

```
fn main() {
  println!("Hello, World!");
}
```


A "Quick" Overview...


```
// Number
let luggage_combination = 12345;
```

```
// Number
let luggage_combination = 12345;

// Boolean
let mut is_airshield_open = false;
```

```
// Number
let luggage_combination = 12345;

// Boolean
let mut is_airshield_open = false;

// Text
let planet_name = "Druidia";
```

Logic Statements

```
// Simple Statements (check for number ranges,
values)
x > 100
x == 200
x <= 300
y == true

// Compound Statements (combine them)
x == 100 && y == 200
x == 200 || (y == 200 && z == 200)</pre>
```

Structs

```
struct Planet {
   /// Name of the planet
   name: String,

   /// Store the airshield combiation
   airshield_combination: u64,

   /// Is airshield open?
   is_airshield_open: bool
}
```

Structs

```
fn main() {
    // Create a planet.
    let druidia = Planet {
        name: "Druidia".to_string(),
        airshield_combination: 12345,
        is_airshield_open: false
    };
}
```

Statements

```
// Run code depending on the value of some
statement
let y = true;
if y {
  println!("Y is true");
} else {
  println!("Y is not true!!");
}
```

Statements

```
// Declare a variable
let mut x = 120;
// Repeatedly do something
while x > 100 {
 println!("X = {}", x);
  x = 1;
// Another way...
loop {
  if x <= 100 {
   break;
  println!("X = {}", x);
  x -= 1;
```

Statements

```
// Store a restaurant rating.
let restaurant rating = 5;
// Pattern matching statement.
let result = match restaurant rating {
  1 | 2 => "Bad",
  3 \Rightarrow "Ok",
  4 => "Good",
  5 => "Excellent",
  // Number isn't a star rating - unknown.
    => "Unknown"
// Print to screen
println!("Rating is {} stars ({})", restaurant_rating, result);
```

Functions & Methods

Functions & Methods

Functions & Methods

Functions

```
/// Check the combination for an airshield.
fn check_combination(passcode: u64) -> bool {
  if passcode == 12345 {
    return true
  } else {
    return false
  }
}
```

Methods

```
impl Planet {
    /// Check the combination for an airshield.
    fn check_combination(&self, passcode: u64) -> bool {
        if passcode == self.airshield_combination {
            return true
        } else {
            return false
        }
    }
}
```

Methods

```
fn main() {
 // Create a planet.
 let druidia = Planet {
   name: "Druidia".to string(),
   airshield combination: 12345,
   is airshield open: false
 if druidia.check combination(12345) {
   println!("Combination correct!");
```

Block Rules

```
/// Check the combination for an airshield.
fn check_combination(passcode: u64) -> bool {
  if passcode == 12345 {
    true
  } else {
    false
  }
}
```

Block Rules

```
/// Check the combination for an airshield.
fn check_combination(passcode: u64) -> bool {
  if passcode == 12345 {
    true; [!] Expected to return bool
  } else {
    false; [!] Expected to return bool
  }
}
```

Error Handling


```
/// Rust's Standard Error Type
pub enum Result<T, E> {
    Ok(T),
    Err(E),
}
```

```
// A function that returns an error type.
fn failable(param: u64) -> std::result::Result<u64, ()> {
   if param < 100 {
      // If the number's less than 100, add 100 to it.
      Ok(param + 100)
   } else {
      // Otherwise, We fail as an error.
      Err(())
   }
}</pre>
```

```
fn main() {
    // Check result value
    if let Ok(res) = failable(40) {
        println!("got result: {}", res);
    } else {
        println!("got error!");
    }
}
```

```
fn main() {
    // Perform a match on the result
    match failable(50) {
      Ok(res) => println!("result: {}", res),
      Err(_) => println!("Got an error.")
    }
}
```

Optionals

```
pub enum Option<T> {
    None,
    Some(T),
}

fn something() -> Option<u64> {
    return Some(1337)
}

fn something_else() -> Option<u64> {
    return None
}
```

Traits

Traits

- Zero-Cost Abstraction
- Statically and Dynamically dispatched
 - Statically dispatched traits are compiled into separate copies depending on types used
 - Dynamic traits are dispatched at runtime
- Use as interfaces, markers, allow overloading of operators, functions.

```
use std::fmt;

// a re-implementation of std::fmt:Display trait.

trait Display {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error>;
}
```

```
// We have some struct
struct Point {
   x: i32,
   y: i32,
// Implement the trait
impl fmt::Display for Point {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
       // write! writes to anything implementing std::io::Write
       write!(f, "({}, {})", self.x, self.y)
```

```
fn main() {
  let origin = Point { x: 0, y: 0 };
  println!("The origin is: {}", origin);
}
```


Some Traits in standard library:

```
std::convert::{From, Into}
std::fmt::Display
```

std::string::ToString;

std::borrow::Borrow
std::iter::Iterator

https://stevedonovan.github.io/rustifications/ 2018/09/08/common-rust-traits.html

Crates & Modules

Cargo.toml

[package]

```
name = "satellite-tracking"

version = "0.1.0"

authors = ["Rich Infante <rich@richinfante.com>"]

edition = "2018"
```

[dependencies]

```
satellite = { path = "../satellite-rs" }

# { git = "https://github.com/richinfante/satellite-rs.git", branch = "master" }

chrono = "0.4"

reqwest = "0.9.12"

space-plot = { path = "../space-plot" }

rand = "0.6.5"
```

Using Modules

```
use std::fmt::Formatter;
use chrono::prelude::*
```

Ownership

Ownership in Rust

- You may have seen the & and * operators in C for referencing / dereferencing variables.
- They are used in a similar manner in rust, but with some more restrictions.

Ownership in Rust

- In Rust, you can either have an "Owned" or "Borrowed" reference to an object.
- Syntax is similar to C-pointers
- However, it actively prevents you from doing bad things.
- Usually, code that would break thread safety or other expectations won't even **compile**.

```
struct Food {
    name: String
}

// Eat food - takes ownership of the variable.
fn eat_food(meal: Food) {
    println!("ate food: {}", meal.name);
}

fn main() {
    let pizza = Food { name: "Pizza".into() };
    eat_food(pizza);
}
```

```
struct Food {
    name: String
}

// Eat food - takes ownership of the variable.
fn eat_food(meal: Food) {
    println!("ate food: {}", meal.name);
}

fn main() {
    let pizza = Food { name: "Pizza".into() };
    eat_food(pizza);
    eat_food(pizza);
}
```

```
struct Food {
    name: String
}

// Eat food - takes ownership of the variable.
fn eat_food(meal: Food) {
    println!("ate food: {}", meal.name);
}

fn main() {
    let pizza = Food { name: "Pizza".into() };
    eat_food(pizza);
    eat_food(pizza);
}
```

```
struct Food {
    name: String
}

// Eat food - takes ownership of the variable.
fn eat_food(meal: Food) {
    println!("ate food: {}", meal.name);
}

fn main() {
    let pizza = Food { name: "Pizza".into() };
    eat_food(pizza); <-- Moved Here
    eat_food(pizza); [!!] Use of moved value
}</pre>
```



```
struct Food {
    name: String
}

// Eat food - takes ownership of the variable.
fn eat_food(meal: Food) {
    println!("ate food: {}", meal.name);
}

fn main() {
    let pizza = Food { name: "Pizza".into() };
    eat_food(pizza); <-- Moved Here
    eat_food(pizza); [!!] Use of moved value
}</pre>
```



```
struct Food {
   name: String
// Eat food - takes ownership of the variable.
fn eat food(meal: Food) {
   println!("ate food: {}", meal.name);
// Inspect food - borrows the variable.
fn inspect food(meal: &Food) {
   println!("inspected food: {}", meal.name);
fn main() {
    let pizza = Food { name: "Pizza".into() };
    inspect food(&pizza);
    eat_food(pizza);
```

```
struct Food {
   name: String
// Eat food - takes ownership of the variable.
fn eat food(meal: Food) {
   println!("ate food: {}", meal.name);
// Inspect food - borrows the variable.
fn inspect food(meal: &Food) {
   println!("inspected food: {}", meal.name);
    eat food(*pizza);
fn main() {
    let pizza = Food { name: "Pizza".into() };
    inspect_food(&pizza);
    eat_food(pizza);
```

```
struct Food {
    name: String
// Eat food - takes ownership of the variable.
fn eat food(meal: Food) {
   println!("ate food: {}", meal.name);
// Inspect food - borrows the variable.
fn inspect food(meal: &Food) {
   println!("inspected food: {}", meal.name);
    eat food(*pizza); [!!] Cannot move out of borrowed context.
fn main() {
    let pizza = Food { name: "Pizza".into() };
    inspect_food(&pizza);
    eat_food(pizza);
```

```
struct Food {
    name: String
// Eat food - takes ownership of the variable.
fn eat food(meal: Food) {
   println!("ate food: {}", meal.name);
// Inspect food - borrows the variable.
fn inspect food(meal: &Food) {
   println!("inspected food: {}", meal.name);
    eat food(*pizza); [!!] Cannot move out of borrowed context.
fn main() {
    let pizza = Food { name: "Pizza".into() };
    inspect_food(&pizza);
    eat_food(pizza);
```



```
struct Food {
    name: String
// Eat food - takes ownership of the variable.
fn eat food(meal: Food) {
   println!("ate food: {}", meal.name);
// Inspect food - borrows the variable.
fn inspect food(meal: &Food) {
   println!("inspected food: {}", meal.name);
    eat food(*pizza); [!!] Cannot move out of borrowed context.
fn main() {
    let pizza = Food { name: "Pizza".into() };
    inspect_food(&pizza);
    eat_food(pizza);
```


Got all that?

Further Reading

- https://doc.rust-lang.org/book/title-page.html The Book
- https://www.rust-lang.org/ Language Website
- https://crates.io/ Crate registry
- https://rustup.rs/ Installer

Slides Available Online:

http://richinfante.com/talks/